База знаний

Symbiosis between nanohaloarchaeon and haloarchaeon is based on utilization of different polysaccharides

Научные статьи
We report on cultivation and characterization of an association between CandidatusNanohalobium constans and its host, the chitinotrophic haloarchaeon HalomicrobiumLC1Hm, obtained from a crystallizer pond of marine solar salterns. High-quality nanohaloarchael genome sequence in conjunction with electron- and fluorescence microscopy, growth analysis, and proteomic and metabolomic data revealed mutually beneficial interactions between two archaea, and allowed dissection of the mechanisms for these interactions.

Owing to their ubiquity in hypersaline environments, Nanohaloarchaeota may play a role in carbon turnover and ecosystem functioning, yet insights into the nature of this have been lacking. Here, we provide evidence that nanohaloarchaea can expand the range of available substrates for the haloarchaeon, suggesting that the ectosymbiont increases the metabolic capacity of the host.

Nano-sized archaeota, with their small genomes and limited metabolic capabilities, are known to associate with other microbes, thereby compensating for their own auxotrophies. These diminutive and yet ubiquitous organisms thrive in hypersaline habitats that they share with haloarchaea. Here, we reveal the genetic and physiological nature of a nanohaloarchaeon–haloarchaeon association, with both microbes obtained from a solar saltern and reproducibly cultivated together in vitro. The nanohaloarchaeon CandidatusNanohalobium constans LC1Nh is an aerotolerant, sugar-fermenting anaerobe, lacking key anabolic machinery and respiratory complexes. The nanohaloarchaeon cells are found physically connected to the chitinolytic haloarchaeon Halomicrobium sp. LC1Hm.

Our experiments revealed that this haloarchaeon can hydrolyze chitin outside the cell (to produce the monosaccharide N-acetylglucosamine), using this beta-glucan to obtain carbon and energy for growth. However, LC1Hm could not metabolize either glycogen or starch (both alpha-glucans) or other polysaccharides tested. Remarkably, the nanohaloarchaeon’s ability to hydrolyze glycogen and starch to glucose enabled growth of Halomicrobium sp. LC1Hm in the absence of a chitin. These findings indicated that the nanohaloarchaeon–haloarchaeon association is both mutualistic and symbiotic; in this case, each microbe relies on its partner’s ability to degrade different polysaccharides.

This suggests, in turn, that other nano-sized archaeota may also be beneficial for their hosts. Given that availability of carbon substrates can vary both spatially and temporarily, the susceptibility of Halomicrobium to colonization by Ca. Nanohalobium can be interpreted as a strategy to maximize the long-term fitness of the host.

ПОДРОБНЕЕ